Статические (нижний



Рисунок 15. 2.  Статические (нижний уровень) и минимаксные рабочие
оценки вершин дерева поиска. Выделенные ходы образуют основной
вариант, т. е. минимаксно-оптимальную игру с обеих сторон.


Мы различаем два вида оценок: оценки вершин нижнего уровня и оценки внутренних вершин (рабочие оценки). Первые из них называются также "статическими", так как они вычисляются при помощи "статической" оценочной функции, в противоположность рабочим оценкам, получаемым "динамически" при распространении статических оценок вверх по дереву.

Правила распространения оценок можно сформулировать следующим образом. Будем обозначать статическую оценку позиции  Р   через  v( P),  а ее рабочую оценку - через   V( Р).  Пусть  Р1,   ...,  Рn  -  разрешенные преемники позиции  Р.  Тогда соотношения между статическими и рабочими оценками можно записать так:

        V( Р)  =  v( P)

если  Р  -  терминальная позиция дерева поиска (n=0)

        V( Р)  =  max V( Рi )
                           i

если  P  -  позиция с ходом МАКС'а

        V( Р)  =  min V( Рi )
                           i

если  Р  -  позиция с ходом МИН'а



line();

% Минимаксная процедура: минимакс( Поз, ЛучшПоз, Оц)
% Поз - позиция, Оц - ее минимаксная оценка;
% лучший ход из Поз ведет в позицию ЛучшПоз

        минимакс( Поз, ЛучшПоз, Оц) :-
                ходы( Поз, СписПоз),  !,

                                        % СписПоз - список разрешенных ходов
                лучш( СписПоз, ЛучшПоз, Оц);
                стат_оц( Поз, Оц).
                % Поз не имеет преемников

        лучш( [Поз], Поз, Оц) :-
                минимакс( Поз, _, Оц),  !.

        лучш( [Поз1 | СписПоз], ЛучшПоз, ЛучшОц) :-
                минимакс( Поз1, _, Оц1),
                лучш( СписПоз, Поз2, Оц2),
                выбор( Поз1, Оц1, Поз2, Оц2, ЛучшПоз, ЛучшОц).

        выбор( Поз0, Оц0, Поз1, Оц1, Поз0, Оц0) :-
                ход_мина( Поз0), Оц > Оц1,  !;
                ход_макса( Поз0), Оц < Оц1,  !.

        выбор( Поз0, Оц0, Поз1, Оц1, Поз1, Оц1).

line();



Содержание раздела