Древовидное представление множества кандидатов



11. 3. 2.  Древовидное представление множества кандидатов

Рассмотрим теперь еще одно изменение нашей программы поиска в ширину. До сих пор мы представляли множества путей-кандидатов как списки путей. Это расточительный способ, поскольку начальные участки путей являются общими для нескольких из них. Таким образом, эти общие части путей приходится хранить во многих экземплярах. Избежать избыточности помогло бы более компактное представление множества кандидатов. Таким более компактным представлением является дерево, в котором общие участки путей хранятся в его верхней части без дублирования. Будем использовать в программе следующее представление дерева. Имеется два случая:

Случай 1:        Дерево состоит только из одной вершины В; В этом случае оно имеет вид терма л( В); Функтор л указывает на то, что В - это лист дерева.

Случай 2:        Дерево состоит из корневой вершины В и множества поддеревьев Д1, Д2, ... . Такое дерево представляется термом

                    д( В, Пд)

        где Пд - список поддеревьев:

                    Пд = [ Д1, Д2, ...]

В качестве примера рассмотрим ситуацию, которая возникает после того, как порождены три уровня дерева Рисунок 11.9. Множество путей-кандидатов в случае спискового представления имеет вид:

        [ [d, b, a], [e, b, а], [f, c, a], [g, c, a] ]

В виде дерева это множество выглядит так:

        д( а, [д( b, [л( d), л( е)] ), д( с, [л( f), л( g)] )] )

На первый взгляд древовидное представление кажется еще более расточительным, чем списковое, однако это всего лишь поверхностное впечатление, связанное с компактностью прологовской нотации для списков.

В случае спискового представления множества кандидатов эффект распространения процесса в ширину достигался за счет перемещения продолженных путей в конец списка. В нашем случае мы уже не можем использовать этот прием, поэтому программа несколько усложняется. Ключевую роль в нашей программе будет играть отношение

        расширить( Путь, Дер, Дер1, ЕстьРеш, Решение)

На Рисунок 11.12 показано, как связаны между собой аргументы отношения расширить. При каждом обращении к расширить переменные Путь и Дер будут уже конкретизированы. Дер - поддерево всего дерева поиска, одновременно оно служит для представления множества путей-кандидатов внутри этого поддерева. Путь - это путь, ведущий из стартовой вершины в корень поддерева Дер. Самая общая идея алгоритма -



Содержание раздела