Разговор с электрическим мозгом

Машина видит, слышит, говорит


Как удивительно работает человеческий глаз! Тайну его деятельности еще не полностью разгадали ученые. Но уже сегодня они думают о создании машины, способной видеть. - Зачем это нужно? - скажут те, кто плохо знаком с проблемами кибернетики и автоматизации. - Как - зачем? В этом случае машина еще более приближается к человеческому мозгу, становится более послушным и чутким помощником человека, гораздо легче может общаться с ним без посредников. Видящая машина способна обучиться грамоте. Она может различать не только буквы, цифры и детали машин. Она сможет работать сборщиком на конвейере, лаборантом в институте и даже наборщиком. Обучи машину грамоте, дай ей любую рукопись, и она прекрасно встанет за машину - линотип. Однако проблема видения и узнавания для кибернетических машин - одна из самых сложных. Посмотрите, как мы пишем. У каждого свой почерк - не бывает, чтобы два человека писали совершенно одинаково. Вот я рассматриваю записи великих людей мира - Маркса, Ленина, Пушкина, Наполеона, Достоевского, Маяковского. Какое разнообразие почерков! Но мы читаем знаки, нанесенные на бумагу, и воспринимаем мысли великих людей, навечно запечатленные в сознании человечества, при помощи буквы, слова, фразы. По каким же признакам мы способны понимать различные почерки? Очевидно, при самом различном написании букв есть необходимое, в чем-то устойчивое единообразие, которое дает возможность не путать букву "а" с "о", букву "б" с "в". Представьте себе электронный глаз, состоящий из 60 фотоэлементов. Перед этим глазом кибернетической машины ставятся цифры, написанные совершенно по-разному: и твердо, и округло, и жестко, и еле нацарапанные на листке бумаги* Зачем? Да машину нужно научить общности восприятия, отучить от машинной узости. Такие машины уже существуют. Пока они осваивают начатки знаний. Известный исследователь М. М. Бонгард работает в этом направлении - он "натаскивает" машину, заставляя ее привыкать к различным изображениям.
И когда после такой тренировки перед электронным глазом ставили цифры или буквы в новом, незнакомом начертании, машина их узнавала. Удивительное и неожиданное предложение сделал советский математик Э. М. Браверман. Он создал так называемую гипотезу "компактных множеств". Каждое изображение буквы или цифры, написанных по-разному, вызывает как бы ряд близко лежащих точек в машине. Множество изображений дает и множество точек, которые группируются достаточно компактно, чтобы в массе своей определить тот или иной знак. И когда машина, в соответствии с усвоенной программой, неожиданно знакомится с новой цифрой или буквой, то по тому, к какому множеству точек будет отнесена эта буква или цифра, машина опознает ее. Американцы предложили узнающую машину, названную ими "Перцептрон". Эта машина имеет сетчатый экран из 400 фотоэлементов, воспринимающих изображение. Электрические сигналы от фотоэлементов поступают к электронным клеткам машины, как бы моделирующей живую нервную систему. Процесс обучения машины был довольно трудным. Она должна была узнавать выставленные перед экраном геометрические фигуры. Обучение машины проходило при взаимоотношениях, какие иногда создаются между строгим учителем и легкомысленным учеником: за каждую ошибку "Перцептрон" наказывали, ослабляя сигналы, поступающие к главному электронному устройству машины. В этом случае ошибочные сигналы имели меньшее значение, чем сигналы правильные. Так машина училась на своих собственных ошибках. Более интересной оказалась машина "Марк-1", способная опознавать буквы алфавита. В этой машине тоже 400 фотоэлементов и соответствующих им электронных узлов, моделирующих нервные узлы. Память машины состоит из 512 элементов. Кстати, второй вариант этой машины, находящейся в периоде сборки, имеет в 20 раз больше элементов памяти. Машина научилась распознавать печатные буквы и цифры в различных начертаниях. Пройдет какое-то время, и машина сумеет читать печатный текст - книги, газетные сообщения.


А если машина различает буквы, значит, она может различать и образы. Уже сегодня машина в состоянии производить зрительные подсчеты количества кровяных шариков во время анализов крови. А ведь раньше эту кропотливую работу мог делать только человек. Машина в состоянии не только подсчитывать количество деталей, но определять их характер, их разнообразие Вероятно, зрячая машина станет тем механизмом, который сможет не только узнавать детали, поступающие на конвейер, но и закреплять их там, где это необходимо. - Однако живой глаз не только различает форму предмета, его яркость, но и цвет его. Способна ли на такое машина? - Во-первых, не все животные различают цвет. Взять, к примеру, осьминога - его мир бесцветен, сер и однообразен. Зрение осьминога ахроматично - оно различает лишь яркость освещения, но не цвет. Человек видит трихроматно, то есть трехцветно. Из трех основных цветов и их смешения складывается весь яркий, многоцветный мир вокруг нас. Но, оказывается, и машины начинают осваивать цветное зрение, используя чувствительные фотоэлементы. Кремниевый и селеновый фотоэлементы как раз и обладают неожиданной способностью "различать" цвета. Используя это свойство, советские ученые М. Бонгард и А. Вызов создали установку, моделирующую цветовое зрение. Этот удивительный прибор безошибочно распознает не только яркость, но и цвет. Разве это не чудо: электронная машина видит радугу! Однако обратимся к другим способностям машины. Сможет ли она логически понимать написанное? Да, сможет. Уже сегодня в наших институтах есть машины, которые могут различать предложения: правильно оно построено или нет В Киевском вычислительном центре проделали интересный опыт. Взяли 50 существительных, 16 глаголов и наиболее часто употребляемые предлоги. Из этих слов составили фразы, конечно, довольно примитивные, но все же осмысленные: ""Соловей поет на дереве", "Рыба плавает в воде" и т. п. Машина рассортировала имена существительные и глаголы в соответствии со смыслом.


И когда ей предлагали совершенно бессмысленные фразы: "Рыба поет на дереве" или "Соловей плавает в воде", машина немедленно реагировала на эти ошибки. Сегодня мы уверенно можем сказать, что пройдет несколько лет, и появятся машины, способные читать и понимать человеческую речь. Но как заставить машину понимать живую речь? Ведь написанные слова можно разделить на буквы алфавита. А как автомату распознать слитную речь человека? Здесь произнесение букв взаимно перекрещивается, их невозможно свести к алфавиту. Исследователи языка пошли по иному пути - (c)ни установили, что можно создать звуковые символы, подобные алфавиту. Фонемы - это небольшое число звуковых символов, которые могут быть записаны фонетически. Из 41 русской фонемы может быть составлено любое слово, любая фраза, так же как из трех десятков букв алфавита составляются слова, фразы, книги. Фонемы отличаются одна от другой, значит, нужно приучить машину различать фонемы в слитном тексте, то есть находить ее буквенный или цифровой эквивалент, с тем чтобы зафиксировать фонему в памяти машины. Вот почему, когда машину учат слышать, то отдельные слова с помощью электронной техники разбивают на фонемы, тщательно анализируя каждую из них. При ""• этом случайные признаки фонем всячески устраняются, с тем чтобы максимально увеличить различие между ними. Впервые такое исследование провел русский профессор Л. Л. Мясников еще в начале 40-х годов. После войны этой проблемой занимались другие советские ученые. Мало того, что ученые анализировали состав речи, они создавали устройства, с помощью которых можно заставить машину говорить, то есть можно создать искусственную речь. Ученые заметили, что существует много различий между гласными и согласными. 6 спектре гласных звуков создаются и концентрируются как бы сгустки энергий, названные формантами. Источником гласных являются наши голосовые связки. Проходя через систему резонаторов лрлости рта, черепа, в результате соответствующего положения языка и челюсти звук усиливается или подавляется.


Совсем иначе образуются согласные. Они образуются больше дыханием, а не участием голосовых связок. Различна длительность гласных и согласных. Самой длительной является гласная "а", на которую затрачивается 260 миллисекунд, самой короткой - согласная "п", для произнесения которой нужно всего 20 миллисекунд. Анализ, проведанный ленинградскими учеными, показал и другое. В начале и в конце слова длительность гласных значительно больше, чем в середине; во фразах меньше, чем в отдельных словах. Именно по этим многочисленным признакам машина в состоянии различать звуки - ока как бы слышит их. Исходя из всего этого, можно заставить машину не только слышать, но даже и говорить. Как подобрать звуки, чтобы можно было из них создать голос машины? Опыт за опытом ставили ученые и после многочисленных исследований сделали неожиданное открытие: сигналы, вырабатываемые генератором пилообразных импульсов, чрезвычайно похожи на колебания голосовых связок. Голос можно получить искусственно - вот к какому выводу пришли исследователи. Нужно лишь отработать сгустки звуковой энэргии в форманты. Для каждой гласной. В конце концов ученым удалось получить звуки, очень похожие на гласные русского языка. Звуки, полученные от генератора, прослушивались специальной группой операторов в составе 10-15 человек. Они искали звуки, сходные с формантами, необходимыми для будущей речи машины. А как получить согласные? Это оказалось значительно проще. Их создали с помощью шумового генератора. Отбор звуков - длительный и сложный процесс. По ряду признаков звуки делятся на две группы, затем снова на две группы и опять на две части. Эти операции проводятся до тех пор, пока не удастся окончательно распознать все фонемы. В этом сложном процессе участвует не только акустика, но и электроника - искусственно осуществляется речевой сигнал. Машина распознает звуки речи с помощью цифр электронно-вычислительных элементов. Иначе строится распознание живой речи человека, живого человеческого голоса.




Для опыта было отобрано 50 дикторов - 25 мужчин и 25 женщин. Их речи записывались на магнитофон. Но, как известно, с магнитофона речь проникает в машину в виде непрерывного электрического сигнала, а цифровые данные электронная машина принимает только прерывистыми сигналами. Специальным устройством преобразовали непрерывный сигнал в прерывистый. Машина вычисляла соотношение энергии в различных частях спектра речи, условно делила речь на гласные и согласные и в результате правильно опознала 97 процентов слов. Недавно в Соединенных Штатах Америки был проведен интересный эксперимент по вводу в машину информации с голоса. Оператор неоднократно повторял в микрофон слово. Специальное устройство обрабатывало его и в виде цифр вводило информацию в машину. Запоминающие устройства машины создали как бы репродукцию или маску каждого слова. При узнавании слова машина сравнивала его со всеми масками слова, хранящимися в ее памяти, и определяла, на какую маску больше всего похоже произносимое слово. 7 женщин и 9 мужчин однообразно говорили: "Один, два, три, четыре..." и т. д. 16 голосов создали в машине большой выбор интонаций разных людей. И когда впоследствии они разговаривали с машиной, она пыталась узнать, кто именно с ней беседует. В результате она давала такие ответы: - Это Джон сказал "три"... Говорящего определить нельзя, но сказана цифра "три",.. Невозможно определить ни личность говорящего, ни произносимое им слово. Интересно, что машина сумела опознать каждую из семи женщин, слова же, произнесенные мужчинами, узнавались хуже - только на 98 процентов. Уже сегодня в Москве, Ленинграде и Тбилиси созданы специальные лаборатории экспериментальной фонетики. Здесь вы видите сложные приборы для записи звуков, специальные механизмы для резки и склейки фонем. Здесь создаются спектры звуков. Вы видите объемные рисунки гласных и согласных звуков и даже карточки целых слов. Это удивительный мир застывших звуков, которые оживают в вашем присутствии. Но все направлено к тому, чтобы в конечном счете научить машину говорить.


Она может произносить слова, рожденные либо звуком генератора, либо куском магнитной ленты, на которой записаны отдельные фонемы, созданные голосом человека. В Новосибирском институте автоматики и электрометрии машина разборчиво и внятно произносит многозначительную фразу: - Наша машина училась. Она узнала жизнь. Машина произносит эту фразу каким-то отвлеченным, "ничьим" голосом. В произношении исчезли все особенности живого голоса. Но ведь звуки эти рождены машиной! Зимой 1963 года в дни международного женского шахматного турнира научные работники Тбилиси решили подбодрить грузинскую шахматистку Нону Гаприндашвили. И вот впервые в истории радиотехники из Тбилиси по радио была передана фраза, произнесенная машиной: - Будь внимательна, дорогая Нона! Теплое приветствие было сказано железным голосом автомата, но как дороги нам эти первые слова машины. ...Еще до войны американская телефонная компания на Всемирной выставке демонстрировала аппарат, названный "Вокадер". Он отвечал на вопросы посетителей необычным, лишь отдаленно напоминающим человеческий, голосом. Сложная система специальных приборов управлялась оператором. Ответ поступал на магнитофон, соединенный с громкоговорителем. Немногословен был механизм, самостоятельно воспроизводящий звуки речи, подобно сложному голосовому аппарату человека. А то, что передавали из Тбилисского института автоматики и электроники по радио, было подлинной речью машины. В институте сконструирована тележка, управление которой подчинено человеческому голосу. Вы можете сказать: "Вперед!" - и тележка двинется вперед. "Направо! Налево! Стоп!" - машина выполняет все приказы с голоса. Это только начало. Придет время - кибернетические помощники человека будут не только с голоса понимать своего хозяина, но также голосом будут говорить ему о своих ощущениях, о своих нуждах и желаниях. Представьте себе на мгновение такую картину. Вы заболели. Вы рассказываете диагностической машине о своем самочувствии - в чем выражается ваше недомогание.


Вы говорите ей о составе крови, о результатах тех или иных анализов. И машина отвечает вам - тоже голосом. Не только о характере вашего заболевания говорит она - машина дает вам советы, рецепты. И это не фантастика, это - одно из реальных явлений живой жизни завтрашнего дня. Часто в научно-фантастических романах нам приходится читать об умных роботах, которым вверяется управление космическим крраблем, на долгие годы уходящим в бескрайние просторы Вселенной. Роботы предупреждают людей о грозящей опасности, о положении корабля живым, почти человеческим голосом. С этими роботами космонавты разговаривают дружески, как со своими приятелями. Такая картина представлялась нам нереальной, условной. Но сегодня, прикоснувшись к миру кибернетических машин, которые подобно ребенку учатся понимать речь, видеть окружающий мир, познавать его и высказываться живой человеческой речью по поводу своих "машинных переживаний", мы начинаем понимать, кек близко подошли люди к осуществлению самой пылкой фантастики. Да, стираются границы между фантазией и действительностью.

12 мая, вторник Сегодня обычный день. Во время работы было много разговоров о том, как интереснее провести свободное время. Кузовкина об этом можно было и не спрашивать: сегодня вечером у него ответственный матч: Тула - Новомосковск. Он заметно волнуется - он правый нападающий. От него во многом зависит исход игры. Коля Трошин обеспокоен другим - быстро надвигающимися зачетами. Он, конечно, мог бы на время экзаменов полностью освободиться от работы, но не хочет - монтаж затягивается. Да и обкатка оборудования хоть и очень хлопотливое дело, но чрезвычайно увлекательное. Меньше всех говорила Нина. Я давно заметил, что она все время что-то бормочет про себя. Завтра Нина выступает в концерте, во Дворце культуры. Я даже не спрашивал ее, какой номер она подготовила. Все было и без того ясно: целый день Нина повторяла "Письмо Татьяны к Онегину". Не понимаю, почему всех девушек так привлекает "Письмо Татьяны"? Казалось бы, и эпоха не та, и характеры не те, но все читают Пушкина, и обязательно письмо.


Возможно, Кибер впервые попал в обстановку наших забот и увлечений. Вечером он спросил меня: - Что это все время зубрила Нина Охотникова? Я не расслышал. А. "Письмо Татьяны". Пушкина. К. Как же, знаю. Пушкин Александр Сергеевич, камер-юнкер, родился в 1799 году, умер в 1837 году. Убит на дуэли неким Дантесом. Писал стихи, прозу, исследования. А. Абсолютно правильно. Хотя и несколько суховато. К. Как странно вы, люди, запоминаете! Повторяете одно и то же по десять раз. То ли дело мы, машины: один раз информация попала к нам и, пока ее специально не сотрут, будет держаться неизменно. А. Но ведь память человека более емкая, чем ваша, машинная, да и глубина этой памяти удивительна. Как-то я встречался на Кавказе со старушкой, которая в 127 лет помнила события, пережитые ею в семилетнем возрасте. Разве с машинами случалось такое? К. Вы спрашиваете о машинной памяти? У меня и память нестареющая! Что мне дали, то я крепко держу при себе. А вы, люди?.. Ведь у вас все время происходит пускай естественный, но все же распад памяти. Подсчитали даже период полураспада - одни сутки. Через сутки вы, люди, забываете половину того, что удалось вам узнать за день. А. Ну, это, пожалуй, не совсем точно. Хотя действительно, людям обязательно нужно что-то забывать. Это прекрасно, что так устроен человеческий мозг. Если бы все, что мы узнаем, оставалось в нашей голове, эти знания довольно скоро забили бы все каналы нашей памяти. Замечательно другое: мы оставляем в своей памяти только главное и существенное. Это и есть удивительное свойство мозга - раскладывать всю поступающую информацию по полочкам памяти и так, что главное поступает точно в нужный отдел, а случайное отфильтровывается и забывается. К. Ну, пока что вы, люди, составляющие программу нашей машинной памяти, работаете за нас, подбирая все необходимое. Но придет час, и мы приобретем возможность сами отлично отсеивать главное от третьестепенного. И будем делать это побыстрее людей!..

ВЫ ВСЁ, КОНЕЧНО, ПОМНИТЕ...

Память человека! Есть ли что-нибудь чудеснее и удивительнее?! Спросите самую старую москвичку Любовь Васильевну Пужак - а ведь ей 154 года! - что она вспоминает из детства.


Она вам спокойно расскажет о том, что было в самом начале прошлого века. Она разговаривала с Некрасовым, с Чеховым. Даже трудно поверить! Где, в каких глубинах человеческого сознания таятся крошечные кристаллы памяти? На каких экранах нашего сознания запечатлелись они? В каких глухих закоулках мозга раздаются голоса близких и далеких людей, которых уже давно нет в живых? Память - великое чудо. В этом отношении возможности мозга неисчерпаемы. Нам очень трудно представить себе, как мог Алехин - всемирно известный шахматист,- находясь в гостиной и болтая с друзьями, спокойно помешивая ложкой сахар в стакане чая, лишь изредка просить передвинуть одну из фигур на той или иной доске, которые он видел мысленно. А было этих досок свыше тридцати. Я присутствовал на психологических опытах Михаила Куни. Уже немолодой человек, внимательный, серьезный, он показывал зрителям такие примеры памяти, которые вызывали недоумение и недоверие. Вот на стене вывешено 20 разноцветных дисков. Только мгновение, долю секунды Куни скользит взглядом по этим дискам, затем поворачивается к зрителям и спокойно, обстоятельно объясняет им расположение цветов. Но это еще не самое удивительное подтверждение человеческой памяти. Три черные доски с колонками цифр. Цифры написаны в пять рядов, состоят из трехзначных чисел. Доски вращаются в разные стороны. Куни только 1-2 секунды смотрит на эти расплывающиеся в пространстве цифры, затем отворачивается, сосредоточенно думает и через минуту называет вам не только цифры, но и сумму всех этих размытых движением чисел. - Не может этого быть! - говорим мы. Но Михаил Куни только улыбается. - Это просто хорошо тренированная зрительная память,- говорит он.- Ведь у меня перед глазами и сейчас стоят эти цифры. Хотите, повторю? - Нет, что вы...- смущаемся мы. Куни приводит нам пример моторной памяти. - Я вспоминаю случай,- говорит он,- который произошел со мной очень давно, кажется в 1930 году. Меня пригласил к себе один профессор, чтобы я показал ему несколько опытов памяти.


В присутствии товарищей профессор предложил повторить мне ряд слов, совершенно не связанных между собой. Каков же был мой ужас, когда я услышал только латинские слова, а я даже не знал этот язык! "Довольно",- сказал кто-то, когда было названо сороковое слово, кстати, единственное понятное мне. И все-таки после небольшой паузы,- продолжает Куни,- я без ошибки повторил все сорок незнакомых мне слов. Мы могли привести много примеров того, что даже память среднего человека, лишенного специальной тренировки, все равно вызывает удивление. Так где же скрывается эта тайна в голове человека? Говорят, что клетки височных долей мозга являются основным вместилищем памяти - может быть, и так. Великий русский физиолог И. П. Павлов, много работавший не только в области физиологии, но и делавший попытки проникнуть в тайну человеческой памяти, говорил, что ни одно воздействие на мозг человека не проходит бесследно. Любое раздражение оставляет в мозгу след, говорил Павлов. Эти следы, своеобразные штрихи, и составляют запись нашей памяти, ее материальную основу. Хороший след в мозгу - это длительное запоминание, слабый след - воспоминание стирается. Некоторые ученые считают, что забывание - явление даже полезное. Оно спасает мозг от перенасыщения. Но тем не менее емкость человеческого мозга буквально неисчерпаема. Все попытки отыскать в мозгу участок, который заведует памятью, до сих пор были безуспешными. В чем же дело? Может быть, у мозга нет специального органа памяти или наша память имеет совершенно другую природу, чем, например, память машин? Где же хранятся следы электрических импульсов, которые получают клетки мозга? Хорошо известно, что нервные клетки, в отличие от всех других клеток нашего организма, лишены способности размножаться. Сколько их было при рождении, столько же остается их и при смерти человека. Следовательно, предположение, что память есть рождение какой-то новой клетки, отпадает. Тогда была высказана теория электрического происхождения памяти. Может быть, мозг запоминает благодаря наведению устойчивых круговых токов между несколькими замкнутыми нервными клетками? Ведь клетки связаны между собой тонкими нитями.


С электрической точки зрения, такое предположение имеет основание, тем более что в коре головного мозга действительно обнаружены биотоки. Однако и эта электрическая теория памяти довольно быстро оказалась несостоятельной: мозг потребляет энергии меньше 30 ватт. Как же может быть принята теория электрической памяти при такой скромной мощности? И затем, как в этом случае объяснить поразительную устойчивость памяти? Человек некоторое время находился в состоянии клинической смерти. Так же как и сердцебиение, электрические импульсы в мозгу отсутствовали. И все-таки, вернувшись к жизни, человек вспоминает то, что он помнил до смерти. Другой пример. У человека был сильный припадок эпилепсии - когда мозг потрясают вспышки хаотических электрических импульсов чрезвычайной силы. Казалось бы, такие импульсы должны разрушить устойчивые круговые токи памяти. Но после припадка мозг функционирует совершенно нормально. Значит, и эта теория должна быть отвергнута. Недавно появилась совершенно новая, химическая теория памяти. Она пришла в основном с развитием генетики. Как известно, чудесная способность живой клетки воссоздавать себе подобных по определенной программе никогда не нарушается. Одна-единственная клетка становится родоначальником живого существа, передавая ему все признаки родителей. Отец был левшой - таков и сын, у матери на щеке была родинка - эта родинка, возможно, передастся ребенку. Но, спросите вы, как же это может произойти? Ведь потомство рождается от одной-единственной половой клетки. Значит, в этой клетке и хранится тайна передачи признаков родителей детям. В ядре клетки содержится вещество с очень трудным для произношения названием - дезоксирибонуклеиновая кислота, которую коротко называют ДНК. Именно в молекуле ДНК и записана инструкция, в каком порядке нужно присоединять друг к другу аминокислоты, чтобы клетка создавала именно те белки, какие составляют ее собственную сущность. В каком виде записана эта необыкновенная инструкция? План построения живого организма как бы зашифрован в молекуле ДНК в виде так называемого генетического кода.


Одно слово этого кода называется геном. Гены кек раз и несут ответственность за синтез белковых молекул. Разгадка генетического кода, на грани которой находится сегодняшняя биологическая наука, открывает сказочные перспективы. Ведь этот код не что иное, как тайна шифров всего живого. Обладая этой тайной, мы сможем вмешиваться в запись природы и переделывать ее по своему желанию. Когда мы задумываемся об удивительной компактности наследственной памяти, размещенной в одной клетке - родоначальнике будущего организма, мы с уважением думаем о природе. Как экономно сумела она разместить эту память: в самом маленьком объеме природа сосредоточила основные признаки наследственности. Может быть, именно наследственная память, зашифрованная в молекуле ДНК, и может стать для нас ключом расшифровки тайны человеческой памяти. Кроме ДНК, в живой клетке имеется аналогичное вещество - РНК (рибонуклеиновая кислота). РНК, способствующая росту и размножению, является как бы передатчиком информации от ДНК. Исследования показали, что в нервных клетках - клетках памяти - очень много РНК. Ученые предположили: если ДНК является носителем памяти наследственности, то не является ли РНК носителем обычной памяти? Процесс запоминания, безусловно, должен быть связан с изменением химической структуры РНК. Клетка получила электрический сигнал запоминания. Этот сигнал вызывает изменение в последовательности азотных соединений молекулы РНК и тем самым в структуре белков, которые синтезируются после запоминания. Вторичный сигнал воспоминания расшифровывает химическую запись памяти. О том, что именно биохимические процессы происходят в клетках мозга при их возбуждении, говорят и микроскопические исследования. Изучая мозг обезьян под микроскопом, ученые держали одну группу животных под наркозом, другую - в состоянии возбуждения. Было ясно видно, что в момент передачи возбуждения через отростки клетки к оболочке нервного волокна приближаются мелкие прозрачные пузырьки. Анализ показал, что в пузырьках содержится особс-э химическое вещество - передатчик возбуждения, своеобразный носитель памяти.


Ученые провели ряд опытов с крысами, которых заставляли пробираться через лабиринт. Затем подопытным животным ввели в кровь вещество, разрушающее состав РНК,- животные ориентировались значительно хуже. Это дает основание предполагать, что химическая теория памяти имеет под собой реальную основу. Есть и другое подтверждение. В 1959 году был проведен совершенно необычный эксперимент по исследованию памяти червей планарий. У червей вырабатывали условную рефлекторную реакцию на световое воздействие. При резком освещении они сокращались. "Обученных" червей разрезали пополам, а как известно, они регенерируют свое тело - и через неделю каждая половинка червя приобрела голову или хвост. Снова провели опыт со светом - и снова оба новоявленных червя сокращались. Очевидно, по всему телу червя было распространено химическое вещество, связанное с памятью. А может быть, память передается по наследству? Это проверили на перелетных птицах, которые всегда возвращаются к месту своего рождения. Яйца перелетных птиц были вывезены из Бельгии в Норвегию. Из них вылупились птенцы. Они окрепли и осенью улетели на юг. Куда же они вернутся? Если память наследственна, они вернутся в Бельгию - туда же, где проводят лето их предки. Если память благоприобретенная, они возвратятся в свое гнездо. Весной птицы прилетели в Норвегию. Подводя итоги, мы с некоторой уверенностью можем говорить о том, что память есть не что иное, как изменение химической структуры в живых нервных клетках под действием электрических токов. Причем разные импульсы будут вызывать различную структуру РНК. Таким образом, в одной клетке могут быть записаны и различные сообщения. Если теперь в эту клетку поступит новый электрический импульс, то произойдет обратный процесс химического разложения: клетка вновь придет в возбужденное состояние, которое мы называем воспоминанием. Мы не можем утверждать, что высказанное предположение - неоспоримая истина. Многое еще неясно в процессе формирования человеческой памяти. Как же создается память в машинах? Где она расположена, какие методы существуют для расширения машинной памяти и есть ли сходство между памятью мозга и памятью машины? Современные кибернетические машины имеют самые различные методы запоминания.


Наиболее простым из них является перфокарта. Это металлическая карточка, на которой в определенном порядке пробиты отверстия. Каждая дырочка и есть память. Согласно этим отверстиям машина и будет "запоминать" цифры и данные, зафиксированные на карте. По тому же принципу действует перфолента, длина которой не ограничена и принцип действия ее тот же самый. Изобретение магнитной ленты, на которую нанесен тонкий слой вещества, способного намагничиваться, тоже послужило прекрасным средством для создания машинной памяти. Думаю, что каждый из нас знаком с магнитофоном. Маленькие участки намагничивания, созданные на ленте, могут считываться, превращаясь в электрические колебания. А эти колебания с помощью динамика становятся звуком: музыкой, человеческим голосом и т. д. Машина записывает и считывает с магнитной ленты памяти все необходимые данные. Лента обладает исключительным преимуществом - с нее можно снять до 10000 цифр в секунду. В настоящее время имеются машины, включающие в себя до ста магнитофонов. Объем памяти в них - до миллиарда знаков. Чтобы понять, что это такое, сравним: во всех томах "Войны и мира" Л. Толстого всего лишь несколько миллионов знаков. Существует также машинная память на магнитных барабанах. Принципиально она мало отличается от памяти на ленте. Это та же лента, но только очень широкая и замкнутая. Здесь цифры записываются по многим дорожкам - до 80. На одном барабане можно хранить до 30 000 чисел. Для того чтобы считывать цифры с барабана, его вращают с огромной скоростью - 12000 оборотов в минуту. За время одного оборота считываются и записываются все необходимые данные памяти. Это гораздо удобнее, чем запись на ленте, так как не требует выискивания нужных данных на протяжении многих сотен метров ленты. Существует также машинная память в электростатических трубках. Внешне трубки напоминают кинескоп телевизора. Тонкий луч, направляемый магнитом, вызывает в той или иной точке экрана электростатический заряд. Этот заряд и является носителем памяти.


Чтобы считать написанное на экране, луч должен попасть в необходимую точку этого экрана. Пробегая по экрану с огромной скоростью, он как бы снимает с экрана записанные числа. Запоминающее устройство из нескольких десятков электронно-лучевых трубок может хранить свыше 2000 чисел. К сожалению, эта память недолговечна. Со временем луч разрушает экран, и машина начинает терять память и ошибаться. Этот недостаток отсутствует в так называемой ферритозой памяти. Представьте себе, что на тонких струнах, на проводах в местах их пересечения расположены тонкие кольца, изготовленные из окислов железа. Пропуская ток по основным струнам, вызывают намагничивание колец в том или ином направлении. Для считывания данных магнитной памяти сквозь кольца пропущен специальный проводник. Память не стареет, машина не выходит из строя. Ферритовая память пригодна для долговременного хранения разного рода справочных сведений, таблиц, списков и т. д. Из архива такой машины можно получать данные со скоростью сотен тысяч чисел в секунду. Существует еще много приборов, которые дают машинам возможность хранить в своей памяти информацию и выдавать ее по первому требованию человека. Память машин в зависимости от того, как она используется, может подразделяться на три разные группы. "Оперативная память" - это запоминающее устройство, в котором хранится кратковременная информация. "Долговременная память" необходима машине для хранения информации, которая может потребоваться на протяжении длительного времени. Она записывается на магнитных барабанах и может быть считана машиной в весьма короткие сроки. "Постоянная память" - своеобразная записная книжка машины, в которую записывается на магнитную пленку основная информация, необходимая для операций ЭВМ, Вся история развития быстродействующих вычислительных машин - это история развития "памяти" машин. Возникает вопрос: нельзя ли найти мостик между памятью машины и человека? Память человека обладает поразительной емкостью.


Память машин ограничена и пока что совершенно недостаточна или однобока. Складывается смешная картина: умный человек, с натренированной и беспредельно емкой памятью, имеет электронного помощника, не обладающего глубокой памятью, но с единственным достоинством - быстродействием. Ведь такое электронное существо очень похоже на феноменальных близнецов из Лос-Анджелеса, которых доктор Хорвиц назвал "гениями-идиотами". Чарльзу и Джорджу Компетенс по 24 года. Их развитие остановилось на уровне шестилетнего возраста. Будучи умственно отсталыми людьми, они не могут решить простейшую арифметическую задачку, но обладают сенсационной памятью, и именно из области математики. Они могут мгновенно "подсчитать", какой день недели будет, предположим, 28 января 2153 года... Можно ли считать нормальными этих поразительных американцев? А я знаю совершенно нормального парня из города Горького, который, как говорится, запросто может делать еще более удивительные вещи. Игорю Шелушкову двадцать пять лет. Он преподает математику и лишь изредка встречается с аудиторией, чтобы, почти шутя, почти играя, продемонстрировать свои феноменальные способности. Игорь - быстросчетчик. Помнится, для телевидения организовали как-то соревнование Шелушкова со счетно-решающей машиной. Это было в Киеве, в Институте кибернетики, куда мы приехали с телекамерой. - Зачем вы привезли к нам этого симпатичного молодого человека?-спросил академик В. М. Глушков, глядя на спортивную фигуру Игоря. - Он собирается перегнать в мысленном счете вашу электронную машину. - Вы что, смеетесь?! Это невозможно. - Попробуйте, дайте ему любую задачу. Академик неторопливо начертал на листке бумаги математический корень и поставил над ним степень 77. Затем перо академика начало ставить под корнем цифры невообразимо большого числа. Я насчитал в нем 148 знаков. - Пожалуйста, молодой человек, попробуйте... Мне стало страшновато за моего подопечного. Шелушков отошел к окну и склонился над бумагой. Через 18 секунд он повернулся к нам. - Пятьсот сорок две целых, две десятых, не то четыре, не то шесть сотых,- смущенно произнес он.


Задачу немедленно заложили в программу машины. Она уточнила: пять сотых. Машина сработала, конечно, быстрее человека-счетчика. Но на программирование ушло около 10 минут времени. Мы стояли потрясенные: человек обогнал машину. А Шелушков, улыбаясь, демонстрировал нам свои способности. Он мгновенно подсчитывал количество букв в читаемом отрывке статьи. По нашей просьбе остановился на 637 знаке стихотворения. Он в уме перемножал и складывал пяти-, шестизначные колонки цифр. И все это почти шутя, без какой-либо заметной трудности. - Игорь, как ты все это делаешь? - спросил я его позже. - Мне сложно это объяснить. Какие-то процессы происходят у меня в мозгу как бы помимо четкого сознания. Но я держу в памяти практически любые цифры - мне достаточно взглянуть на них один раз. Что же касается извлечения корня любой степени, я использую в этом случае логарифмы. Таблица логарифмов как бы стоит у меня перед глазами. Остается немногое - применять эту таблицу в мысленных расчетах. А это уже дело практики. Опыты с подсчетом букв и слогов в отрывках прозы и стихов также происходят г моем сознании почти автоматически,- закончил объяснение Игорь. "Это что-то вроде "умственной опухоли",- говорят о феноменах специалисты. Но ведь такой же болезнью пока что поражены машины. В расширении памяти машин, в принципах примитивного ввода и вывода из них информации необходима подлинная революция, иначе машины не оправдают возлагаемых на них надежд. Основоположник кибернетики Норберт Винер оставил интересные соображения о будущем науки. Он говорит: "Я предвижу, что не только биологические науки будут сближаться с физикой, но и физика будет вбирать в себя некоторые биологические науки. Имеется много направлений исследований живого, которые обещают стать важными в будущем и которые можно разделить на научные и технические лишь условно. Одним из этих направлений является изучение нуклеиновых кислот и той возрастающей роли, которая вытекает из факта их воспроизводства. Становится достаточно убедительным, что комплексы нуклеиновых кислот играют основную роль не только в генетической памяти, но, вероятно, они играют аналогичную роль в обычной памяти нервной системы...


В связи с памятью и ролью, которую играют в ее функциях нуклеиновые кислоты, я думаю, вполне возможно, что комплексы нуклеиновых кислот могут быть использованы в машинах в качестве искусственной памяти. И подобно тому, как сейчас мы живем в период широкого использования открытого физикой твердого тела, так будущее поколение будет широко применять нуклеиновые кислоты в качестве ценного инженерного материала". Этот посмертный научный прогноз выдающегося ученого-кибернетика заставляет нас глубоко задуматься. Человек зачастую принимает то или иное решение, не имея для этого достаточных оснований и опыта. Откуда это идет? - А нет ли у человека какой-то основы наследственной памяти? Не передается ли ему с генетической памятью какая-то выработанная тысячами и тысячами лет эволюции память всех предыдущих поколений? Опыт с перелетными птицами как будто отрицает такую возможность. Но ведь человеческий мозг несравнимо сложнее птичьего мозга.

13 мая, среда Вчера Петя Кузовкин "проигрался", по его выражению, "в дым". Футбольный матч со сборной Тулы закончился со счетом 0:3. Какой позор! Петя был мрачен и с особым ожесточением занимался привычным монтажом. Что только не было придумано, чтобы оправдать поражение! И Ваня Петров плохо наступает, и вратарь Тимохин был "не в ударе", и слишком мало кричали болельщики, вероятно симпатизируя больше команде соперников. - Да и судью давным-давно пора "на мыло"! -закончил под общий смех Петя. Но, как говорится, словами делу не поможешь - по адресу проигравшего посыпались дружеские и иронические советы, - Эх ты, кибернетик! - сказал Коля Трошин, полулежа возле раскрытой панели.- Чему тебя только учат?.. Взял бы да и рассчитал на электронной машине секрет выигрыша. Сейчас, говорят, любую игру математически предсказать можно. Как вы думаете, Николай Иванович? Николай Иванович оторвался от схемы: - Ну, пожалуй, не всякую... Но вот в прошлом году группа западногерманских кибернетиков проанализировала на счетной машине вероятность выигрыша в рулетку.


Долго собирали они записи всех ходов, составили по ним программу. И что же?.. Сенсация потрясла Монте-Карло - никому не известные игроки взяли подряд несколько крупных выигрышей, поставив на номера по указаниям машины. - В крайнем случае, ты можешь смоделировать футбольную игру,- не унимался Коля Трошин. Петя Кузовкин только отмахивался от веселых нападок и в конце концов тоже развеселился. Однако самым строгим судьей оказался Кибер. - Ты заметил, какой сегодня злой Петя Кузовкин? - сказал он во время нашего вечернего свидания.- Чудак! Не умеет построить и разыграть комбинацию. А. Ну, это не так легко сделать на футбольном поле. В каждой команде по 11 игроков, и трудно заранее учесть, кто, когда и как пробьет по мячу. К. Все возможно прекрасно рассчитать и продумать. Вот если бы мне дали ноги и голову, я бы им показал, как забивать голы! Я с удивлением посмотрел на говорящий ящик, охваченный спортивным азартом болельщика, Кибер был неумолим. К. Все-таки передайте Кузовкину, что за одного битого двух небитых дают. А в следующий раз пускай обязательно со мной посоветуется. Я ему составлю комбинационную схему игры. Мне бы только исходные данные для модели. А. Перестань хвастаться, Кибер, будь поскромнее. Ведь данные нужны не только о команде новомосковских, но и о команде соперников. А где ты их достанешь? Вернувшись домой, я задумался. А что действительно в состоянии делать электронная машина в области моделирования и решения задач? Ведь ни для кого не секрет, что сегодня на электрических моделях решаются сложнейшие задачи. Вместо реальных моделей, вместо подлинных конструкций проще построить воздушные замки электроники - электрическое подобие реальной жизни. Как же это делается?


Содержание раздела